Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 105(3): 691-694, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32720885

ABSTRACT

Fungi in the genus Clarireedia are widespread and destructive pathogens of grasses worldwide, and are best known as the causal agents of dollar spot disease in turfgrass. Here, we report genome assemblies of seven Clarireedia isolates, including ex-types of the two most widespread species, Clarireedia jacksonii and C. monteithiana. These datasets provide a valuable resource for ongoing studies of the dollar spot pathogens that include population diversity, host-pathogen interactions, marker development, and disease control.


Subject(s)
Agrostis , Ascomycota , Ascomycota/genetics , Host-Pathogen Interactions , Poaceae
2.
Fungal Biol ; 122(8): 761-773, 2018 08.
Article in English | MEDLINE | ID: mdl-30007427

ABSTRACT

Dollar spot is one of the most destructive and economically important fungal diseases of amenity turfgrasses. The causal agent was first described in 1937 as the ascomycete Sclerotinia homoeocarpa. However, the genus-level taxonomic placement of this fungus has been the subject of an ongoing debate for over 75 y. Existing morphological and rDNA sequence evidence indicates that this organism is more appropriately placed in the family Rutstroemiaceae rather than the Sclerotiniaceae. Here we use DNA sequence data from samples of the dollar spot fungus and other members of the Rutstroemiaceae (e.g. Rutstroemia, Lanzia, Lambertella) collected throughout the world to determine the generic identity of the turfgrass dollar spot pathogen. Phylogenetic evidence from three nucleotide sequence markers (CaM, ITS and Mcm7; 1810-bp) confirmed that S. homoeocarpa is not a species of Sclerotinia; nor is it a member of any known genus in the Rutstroemiaceae. These data support the establishment of a new genus, which we describe here as Clarireedia gen. nov. The type species for the genus, Clarireedia homoeocarpa comb. nov., is described to accommodate the dollar spot fungus, and a neotype is designated. Three new species in this clade, Clarireedia bennettii sp. nov., Clarireedia jacksonii sp. nov., and Clarireedia monteithiana sp. nov. that also cause dollar spot disease are described. Clarireedia homoeocarpa and C. bennettii occur primarily on Festuca rubra (C3 grass) hosts and appear to be restricted to the United Kingdom. Clarireedia jacksonii and C. monteithiana occur on a variety of C3 and C4 grass hosts, respectively, and appear to be globally distributed. This resolved taxonomy puts to rest a major controversy amongst plant pathologists and provides a foundation for better understanding the nature and biology of these destructive pathogens.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Plant Diseases/microbiology , Poaceae/microbiology , Ascomycota/growth & development , Ascomycota/isolation & purification , Calmodulin/genetics , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Microbiological Techniques , Microscopy , Minichromosome Maintenance Complex Component 7/genetics , Phylogeny , Sequence Analysis, DNA
3.
Phytopathology ; 108(1): 23-30, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28846056

ABSTRACT

Bacterial etiolation and decline has developed into a widespread issue with creeping bentgrass (CBG) (Agrostis stolonifera) putting green turf. The condition is characterized by an abnormal elongation of turfgrass stems and leaves that in rare cases progresses into a rapid and widespread necrosis and decline. Recent reports have cited bacteria, Acidovorax avenae and Xanthomonas translucens, as causal agents; however, few cases exist where either bacterium were isolated in conjunction with turf exhibiting bacterial disease symptoms. From 2010 to 2014, turfgrass from 62 locations submitted to the NC State Turf Diagnostic Clinic exhibiting bacterial etiolation and/or decline symptoms were sampled for the presence of bacterial pathogens. Isolated bacteria were identified using rRNA sequencing of the 16S subunit and internal transcribed spacer region (16S-23S or ITS). Results showed diverse bacteria isolated from symptomatic turf and A. avenae and X. translucens were only isolated in 26% of samples. Frequently isolated bacterial species were examined for pathogenicity to 4-week-old 'G2' CBG seedlings and 8-week-old 'A-1' CBG turfgrass stands in the greenhouse. While results confirmed pathogenicity of A. avenae and X. translucens, Pantoea ananatis was also shown to infect CBG turf; although pathogenicity varied among isolated strains. These results illustrate that multiple bacteria are associated with bacterial disease and shed new light on culturable bacteria living in CBG turfgrass putting greens. Future research to evaluate additional microorganisms (i.e., bacteria and fungi) could provide new information on host-microbe interactions and possibly develop ideas for management tactics to reduce turfgrass pests.


Subject(s)
Agrostis/microbiology , Bacteria/isolation & purification , Plant Diseases/microbiology , Agrostis/physiology , Bacteria/classification , Bacteria/genetics , Bacteria/pathogenicity , Etiolation , Phylogeny , Plant Leaves/microbiology , Plant Leaves/physiology , Sequence Analysis, DNA , Virulence
4.
Fungal Genet Biol ; 81: 25-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26049125

ABSTRACT

Sclerotinia homoeocarpa F.T. Bennett is a filamentous member of Ascomycota that causes dollar spot, the most economically important disease of turfgrass worldwide. We sequenced and characterized the mating-type (MAT) locus of four recently-collected contemporary strains causing dollar spot, four historical type strains used to describe the fungus, and three species of Rutstroemiaceae. Moreover, we developed a multiplex PCR assay to screen 1019 contemporary isolates for mating-type. The organization of the MAT loci of all strains examined could be classified into one of four categories: (1) putatively heterothallic, as exemplified by all contemporary strains and three of four historical type strains; (2) putatively heterothallic with a deleted putative gene in the MAT1-2 idiomorph, as detected in strains from two recently-collected populations in the United Kingdom that show more similarity to historical strains; (3) putatively homothallic with close physical linkage between MAT1-1-1 and MAT1-2-1, as found in one historical type strain of S. homoeocarpa and two strains of Rutstroemia cuniculi; and (4) an unresolved but apparently homothallic organization in which strains contained both MAT1-1-1 and MAT1-2-1 but linkage between these genes and between the two flanking genes could not be confirmed, as identified in R. paludosa and Poculum henningsianum. In contemporary S. homoeocarpa populations there was no significant difference in the frequency of the two mating types in clone-corrected samples when analyzed on regional and local scales, suggesting sex may be possible in this pathogen. However, two isolates from Italy and twenty from California were heterokaryotic for both complete heterothallic MAT idiomorphs. Results from this study contribute to knowledge about mating systems in filamentous fungi and enhance our understanding of the evolution and biology of an important plant pathogen.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Genes, Fungal , Genes, Mating Type, Fungal , Genotype , Ascomycota/isolation & purification , California , DNA Primers/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , Italy , Molecular Sequence Data , Multiplex Polymerase Chain Reaction/methods , Sequence Analysis, DNA , United Kingdom
5.
Pest Manag Sci ; 69(12): 1369-78, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23408719

ABSTRACT

BACKGROUND: The fungus Sclerotinia homoeocarpa causes dollar spot, the most important turfgrass disease worldwide. Demethylation inhibitor (DMI) fungicides have been relied upon heavily to manage this disease. Presently, populations of S. homoeocarpa with reduced sensitivity or resistance to DMIs are widespread in the United States. RESULTS: Cytochrome P450 sterol 14α-demethylase (ShCYP51) and its flanking regions were identified and sequenced in 29 isolates of S. homoeocarpa with a range of DMI sensitivities. No modifications were found in the gene coding and upstream regions that were consistently related to DMI sensitivity. In the absence of propiconazole, ShCYP51 was expressed at a similar low level among DMI baseline and resistant isolates. In the presence of propiconazole, DMI-resistant isolates were induced to express ShCYP51 at significantly higher levels than baseline isolates by propiconazole at 5 mg L(-1) for 5 h or at 0.5 mg L(-1) for 72 h. The ShCYP51 expression level after 72 h exposure to 0.5 mg L(-1) of propiconazole was linearly related to EC50 values and ΔRG (the change in relative growth rate over time), with R(2) values equal to 83.7 and 90.0% respectively. CONCLUSION: Induced overexpression of ShCYP51 in resistant isolates following DMI exposure is an important factor determining DMI sensitivity in S. homoeocarpa.


Subject(s)
Ascomycota/enzymology , Drug Resistance, Fungal , Enzyme Inhibitors/pharmacology , Fungal Proteins/genetics , Fungicides, Industrial/pharmacology , Sterol 14-Demethylase/genetics , Ascomycota/drug effects , Ascomycota/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Methylation/drug effects , Sterol 14-Demethylase/metabolism , United States
6.
Plant Dis ; 94(6): 751-757, 2010 Jun.
Article in English | MEDLINE | ID: mdl-30754312

ABSTRACT

Turfgrass anthracnose, caused by Colletotrichum cereale (≡C. graminicola), has become a common disease of creeping bentgrass and annual bluegrass putting greens throughout the southern United States. Strobilurin (QoI) fungicides such as azoxystrobin are single-site mode-of-action fungicides applied to control C. cereale. In vitro bioassays with azoxystrobin at 0.031 and 8 µg/ml incorporated into agar were performed to evaluate the sensitivity of 175 isolates collected from symptomatic turfgrasses in Alabama, Mississippi, North Carolina, Tennessee, and Virginia. Three sensitivity levels were identified among C. cereale isolates. Resistant, intermediately resistant, and sensitive isolates were characterized by percent relative growth based on the controls with means of 81, 23, and 4%, respectively, on media containing azoxystrobin at 8 µg/ml. The molecular mechanism of resistance was determined by comparing amino acid sequences of the cytochrome b protein. Compared with sensitive isolates, C. cereale isolates exhibiting QoI resistance had a G143A substitution, whereas isolates expressing intermediate resistance had a F129L substitution. C. cereale isolates displaying azoxystrobin resistance in vitro were not controlled by QoI fungicides in a field evaluation. The dominance of QoI-resistant C. cereale isolates identified in this study indicates a shift to resistant populations on highly managed golf course putting greens.

7.
Mol Ecol ; 18(1): 123-35, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19076279

ABSTRACT

Over the past decade, the emergence of anthracnose disease has newly challenged the health of turfgrasses on North American golf courses, resulting in considerable economic loss. The fungus responsible for the outbreaks, Colletotrichum cereale, has also been identified from numerous natural grasses and cereal crops, although disease symptoms are generally absent. Here we utilize phylogenetic and population genetic analyses to determine the role of ecosystem in the advancement of turfgrass anthracnose and assess whether natural grass and/or cereal inhabitants are implicated in the epidemics. Using a four-gene nucleotide data set to diagnose the limits of phylogenetic species and population boundaries, we find that the graminicolous Colletotrichum diverged from a common ancestor into distinct lineages correspondent with host physiology (C3 or C4 photosynthetic pathways). In the C4 lineage, which includes the important cereal pathogens Colletotrichum graminicola, C. sublineolum, C. falcatum, C. eleusines, C. caudatum and several novel species, host specialization predominates, with host-associated lineages corresponding to isolated sibling species. Although the C3 lineage--C. cereale--is comprised of one wide host-range species, it is divided into 10 highly specialized populations corresponding to ecosystem and/or host plant, along with a single generalist population spread across multiple habitat types. Extreme differentiation between the specialized C. cereale populations suggests that asymptomatic nonturfgrass hosts are unlikely reservoirs of infectious disease propagules, but gene flow between the generalist population and the specialized genotypes provides an indirect mechanism for genetic exchange between otherwise isolated populations and ecosystems.


Subject(s)
Colletotrichum/genetics , Ecosystem , Genetics, Population , Phylogeny , Poaceae/microbiology , Bayes Theorem , Colletotrichum/classification , DNA, Fungal/genetics , Evolution, Molecular , Gene Flow , Genetic Variation , Genotype , Likelihood Functions , Molecular Sequence Data , Plant Diseases/microbiology , Sequence Analysis, DNA , Species Specificity
8.
Transgenic Res ; 17(1): 47-57, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17273914

ABSTRACT

Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species worldwide. Fungal diseases present a major limitation in the maintenance of tall fescue lawns, landscapes, and forage fields. Two severe fungal diseases of tall fescue are brown patch, caused by Rhizoctonia solani, and gray leaf spot, caused by Magnaporthe grisea. These diseases are often major problems of other turfgrass species as well. In efforts to obtain tall fescue plants resistant to these diseases, we introduced the bacteriophage T4 lysozyme gene into tall fescue through Agrobacterium-mediated genetic transformation. In replicated experiments under controlled environments conducive to disease development, 6 of 13 transgenic events showed high resistance to inoculation of a mixture of two M. grisea isolates from tall fescue. Three of these six resistant plants also displayed significant resistance to an R. solani isolate from tall fescue. Thus, we have demonstrated that the bacteriophage T4 lysozyme gene confers resistance to both gray leaf spot and brown patch diseases in transgenic tall fescue plants. The gene may have wide applications in engineered fungal disease resistance in various crops.


Subject(s)
Bacteriophage T4/enzymology , Bacteriophage T4/genetics , Festuca/genetics , Festuca/microbiology , Muramidase/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Cloning, Molecular , Festuca/enzymology , Gene Expression , Genes, Viral , Genetic Vectors , Magnaporthe/pathogenicity , Plants, Genetically Modified , Rhizobium/genetics , Rhizoctonia/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...